Yesterday’s IoT attack on Dyn

Yesterday criminals used an “Internet of Things” (IoT) botnet to attack, a provider of name services. The domain name service (DNS) is the network protocol that converts something memorable (like into the IP address you browser needs ( in order to connect to the remote server hosting the web page you want to visit. is a company that provides these services. And as the InfoSec Handlers point out, lots of big-name web sites including twitter and spotify use services and were affected by the attack.

IoT is the name given to consumer devices that you can buy and then attach to the Internet for various reasons (I’ve written about IoT before). Many of these devices have really poor security. They commonly have default and well-known passwords that many users don’t change. So there are lots of Internet-connected devices (easily discoverable with databases like Shodan) with no protection against someone who knows the default passwords.

Brian Krebs has a lot of good detail about yesterday’s attack and how it was the work of IoT devices like video cameras and DVRs controlled by Mirai. Mirai is (publicly available!) malware that scours the Internet looking for devices with default passwords and uses them to attack specific targets. Yesterday someone pointed those devices at, and that’s why you had trouble tweeting about why you couldn’t listen to your music.

Manufacturers have sold a lot of this IoT junk, and we’ll be stuck with this sort of thing for years.

Predictably insecure electronic locks

A couple of researchers recently presented their analysis of a dozen or so consumer electronic locks. Some of these locks are the kind that you’d use on a typical door in place of a deadbolt, and some of them work like padlocks. Most of them use bluetooth for wireless operation: you purchase the lock, install an app on your phone, and then use your phone to lock and unlock the device.

Sounds great, right? That’s fewer keys in your purse or pocket or in that not-very-fake-looking rock on your porch. You can enable a temporary code that you send to your plumber, so that he can enter the house while you’re at work. Some devices even have access logs. (Did the plumber come when he said he would? How long did he stay?)

The researchers found that 75% of the devices they studied were vulnerable to different kinds of attacks. In many or most cases, these attacks involved capturing and analyzing the traffic between the smart phone and the lock. The researchers notified the vendors of the affected products, but none of them was interested in doing anything about it. And why would they? At the very best, it would mean an expensive and embarrassing public relations campaign to notify consumers that they had purchased a lock with a defect.

This offers a plausible way for your character to do some breaking-and-entering. Maybe she needs to enter the home or storage building of a gadget-lover. She might need to plant some kind of sniffer device near the lock she wants to defeat and leave it there long enough for someone to use the lock. The FTS4BT bluetooth protocol analyzer and packet sniffer looks like a USB device that she could plug in to a Raspberry Pi. Tricking the lock might be as simple as replaying the signal that the sniffer recorded. If the devices doesn’t have access logs (or if the owner doesn’t bother looking at them), your character could come and go as she pleases from then on.

Oh, and don’t use electronic locks in real life. There’s a reason people have used metal keys to secure their stuff for hundreds of years.